Many studies have been developed trying to understand the complex molecular mechanisms involved in oncogenesis and progression of prostate cancer (PCa). Current biotechnological methodologies, especially genomic studies, are adding important aspects to this area. The construction of extensive DNA sequence data and gene expression profiles have been intensively explored to search for candidate biomarkers to evaluate PCa. The use of DNA micro-array robotic systems constitutes a powerful approach to simultaneously monitor the expression of a great number of genes. The resulting gene expressing profiles can be used to specifically describe tumor staging and response to cancer therapies. Also, it is possible to follow PCa pathological properties and to identify genes that anticipate the behavior of clinical disease. The molecular pathogenesis of PCa involves many contributing factors, such as alterations in signal transduction pathways, angiogenesis, adhesion molecules expression and cell cycle control. Also, molecular studies are making clear that many genes, scattered through several different chromosomal regions probably cause predisposition to PCa. The discovery of new molecular markers for PCa is another relevant advance resulting from molecular biology studies of prostate tumors. Interesting tissue and serum markers have been reported, resulting in many cases in useful novelties to diagnostic and prognostic approaches to follow-up PCa. Finally, gene therapy comes as an important approach for therapeutic intervention in PCa. Clinical trials for PCa have been demonstrating that gene therapy is relatively safe and well tolerated, although some improvements are yet to be developed.