Understanding how threatened species are distributed in space and time can have direct applications to conservation planning. However, implementing standardized methods to monitor populations of wide-ranging species is often expensive and challenging. In this study, we used baited remote underwater video stations (BRUVS) to quantify elasmobranch abundance and distribution patterns across a gradient of protection in the Pacific waters of Costa Rica. Our BRUVS survey detected 29 species, which represents 54% of the entire elasmobranch diversity reported to date in shallow waters (< 60 m) of the Pacific of Costa Rica. Our data demonstrated that elasmobranchs benefit from no-take MPAs, yet large predators are relatively uncommon or absent from open-fishing sites. We showed that BRUVS are capable of providing fast and reliable estimates of the distribution and abundance of data-poor elasmobranch species over large spatial and temporal scales, and in doing so, they can provide critical information for detecting population-level changes in response to multiple threats such as overfishing, habitat degradation and climate change. Moreover, given that 66% of the species detected are threatened, a well-designed BRUVS survey may provide crucial population data for assessing the conservation status of elasmobranchs. These efforts led to the establishment of a national monitoring program focused on elasmobranchs and key marine megafauna that could guide monitoring efforts at a regional scale.