Effective ocean management and conservation of highly migratory species depends onresolving overlap between animal movements and distributions, and fishing effort.However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort.We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.Industrialised fishing is a major source of mortality for large marine animals (marine megafauna) 1-6 . Humans have hunted megafauna in the open ocean for at least 42,000 years 7 , but international fishing fleets targeting large, epipelagic fishes did not spread into the high seas (areas beyond national jurisdiction) until the 1950s 8 . Prior to this, the high seas constituted a spatial refuge largely free from exploitation as fishing pressure was concentrated on continental shelves 3,8 . Pelagic sharks are among the widest ranging vertebrates, with some species exhibiting annual ocean-basin-scale migrations 9 , long term trans-ocean movements 10 , and/or fine-scale site fidelity to preferred shelf and open ocean areas 5,9,11 . These behaviours could cause extensive spatial overlap with different fisheries from coastal areas to the deep ocean. On average, large pelagic sharks account for 52% of all identified shark catch worldwide in target fisheries or as bycatch 12 . Regional declines in abundance of pelagic sharks have been reported 13,14 , but it is unclear whether exposure to high fishing effort extends across ocean-wide population ranges and overlaps areas in the high seas where sharks are most abundant 5,13 .Conservation of pelagic sharkswhich currently have limited high seas management 12,15,16would benefit greatly from a clearer understanding of the spatial relationships between sharks' habitats and active fishing zones. However, obtaining unbiased estimates of shark and fisher distributions is complicated by the fact that most data on pelagic sharks come from catch records and other fishery-dependent sources 4,15,16 .Here, we provide the first global estimate of the extent of space use overlap of sharks with industrial fisheries. This is based on the analysis of the movements of pelagic sharks tagged with satellite transmitters in the Atlantic, Indian and Pacific oceans, together with fishing vessel movements m...
The extent of the global human footprint [1] limits our understanding of what is natural in the marine environment. Remote, near-pristine areas provide some baseline expectations for biomass [2, 3] and suggest that predators dominate, producing an inverted biomass pyramid. The southern pass of Fakarava atoll-a biosphere reserve in French Polynesia-hosts an average of 600 reef sharks, two to three times the biomass per hectare documented for any other reef shark aggregations [4]. This huge biomass of predators makes the trophic pyramid inverted. Bioenergetics models indicate that the sharks require ∼90 tons of fish per year, whereas the total fish production in the pass is ∼17 tons per year. Energetic theory shows that such trophic structure is maintained through subsidies [5-9], and empirical evidence suggests that sharks must engage in wide-ranging foraging excursions to meet energy needs [9, 10]. We used underwater surveys and acoustic telemetry to assess shark residency in the pass and feeding behavior and used bioenergetics models to understand energy flow. Contrary to previous findings, our results highlight that sharks may overcome low local energy availability by feeding on fish spawning aggregations, which concentrate energy from other local trophic pyramids. Fish spawning aggregations are known to be targeted by sharks, but they were previously believed to play a minor role representing occasional opportunistic supplements. This research demonstrates that fish spawning aggregations can play a significant role in the maintenance of local inverted pyramids in pristine marine areas. Conservation of fish spawning aggregations can help conserve shark populations, especially if combined with shark fishing bans.
The feeding of marine predators is a popular means by which tourists and tour operators can facilitate close observation and interaction with wildlife. Shark-feeding has become the most developed provisioning activity around the world, despite its controversial nature. Amongst other detrimental effects, the long-term aggregation of sharks can modify the natural behaviour of the animals , potentially increase their aggression toward humans, and favour inbreeding. During 949 diving surveys conducted over 44 mo, we investigated the ecology and residence patterns of 36 photo-identified adult sicklefin lemon sharks Negaprion acutidens. The group contained 20 females and 16 males. From this long-term survey, we identified 5 different behavioural groups that we described as 'new sharks' (7), 'missing sharks' (4), 'resident sharks' (13), 'unpredictable sharks' (5) and 'ghost sharks' (7). In spite of movements in and out of the area by some males and females, which were probably related to mating, the general trend was that residency significantly increased during the study, particularly in males, showing a risk of inbreeding due to the reduction of shark mobility. Intra-and interspecific aggression was also witnessed, leading to an increased risk of potentially severe bites to humans. Our findings suggest the need for a revision of the legal framework of the provision-ing activity in French Polynesia, which could include a yearly closure period to decrease shark behavioural modifications due to long-term shark-feeding activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.