Background: Recombinant vaccinia virus (rVV) strains expressing the immunomodulatory cholera toxin B subunit (CTB) fused to the autoantigen glutamic acid decarboxylase (GAD) or the immunosuppressive cytokine interleukin-10 (IL-10) were independently able to generate only low levels of immune suppression of type 1 diabetes mellitus (T1DM). Here we suggest that a vaccinia virus (VV)-mediated combination of CTB::GAD fusion and IL-10 proteins promises a effective and durable immunotherapeutic strategy for T1DM. Methods: To explore this hypothesis, a CTB::GAD fusion gene was co-delivered with a gene encoding IL-10 by rVV infection (rVV-CTB::GAD þ rVV-IL10) into 5-7-week-old non-obese diabetic (NOD) mice. The mice were assessed for vaccine protection against development of hyperglycemia from 12 to 64 weeks of age by assessment of pancreatic inflammation (insulitis) and splenocyte-secreted interferon-g and IL-10 cytokine levels. Results: By 36 weeks of age, from 54% to 80% of the mice in the negative control animal groups (either mockinfected or inoculated with unrelated plasmid or VV) had developed hyperglycemia. Similarly, no statistically significant improvement in protection against diabetes onset was achieved by inoculation with VV expressing CTB::GAD or IL-10 independently. Surprisingly, only 20% of mice co-inoculated with rVV-CTB::GAD þ rVV-IL10 developed hyperglycemia by 28 weeks of age. Other treatment groups developed hyperglycemia by 32-36 weeks. After 36 weeks, diabetes incidence no longer increased in any groups until the end of experiment at 64 weeks of age. Histological analysis of pancreatic tissues of hyperglycemic mice revealed high levels of intra-islet insulitis. Analysis of insulitis at termination of the experiment showed that euglycemic mice co-inoculated with VV expressing CTB::GAD and IL-10 had more effectively reduced inflammation in comparison with the other groups. Conclusions: A combinatorial vaccination strategy based on VV co-delivery of genes encoding the immunoenhanced autoantigen CTB::GAD and the anti-inflammatory cytokine IL-10 can maintain effective and durable euglycemia and immunological homeostasis in NOD mice with prediabetes.