SummarySurvival following pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic cancer. The Lister vaccine strain of vaccinia virus was effective against all human pancreatic carcinoma cells tested in vitro, especially those insensitive to oncolytic adenovirus. The virus displayed inherently high selectivity for cancer cells, sparing normal cells both in vitro and in vivo, with effective infection of tumors after both intravenous (IV) and intratumoral (IT) administration. The expression of endostatin-angiostatin fusion protein was confirmed in a pancreatic cancer model both in vitro and in vivo, with evidence of inhibition of angiogenesis. This novel vaccinia virus demonstrated significant antitumor potency in vivo against the Suit-2 model by IT administration. The present study suggests that the novel Lister strain of vaccinia virus armed with the endostatin-angiostatin fusion gene is a potential therapeutic agent for pancreatic cancer.
Purpose: Vaccinia virus has strong potential as a novel therapeutic agent for treatment of pancreatic cancer. We investigated whether arming vaccinia virus with interleukin-10 (IL10) could enhance the antitumor efficacy with the view that IL10 might dampen the host immunity to the virus, increasing viral persistence, thus maximizing the oncolytic effect and antitumor immunity associated with vaccinia virus.Experimental Design: The antitumor efficacy of IL10-armed vaccinia virus (VVLDTK-IL10) and control VVDTK was assessed in pancreatic cancer cell lines, mice bearing subcutaneous pancreatic cancer tumors and a pancreatic cancer transgenic mouse model. Viral persistence within the tumors was examined and immune depletion experiments as well as immunophenotyping of splenocytes were carried out to dissect the functional mechanisms associated with the viral efficacy.Results: Compared with unarmed VVLDTK, VVLDTK-IL10 had a similar level of cytotoxicity and replication in vitro in murine pancreatic cancer cell lines, but rendered a superior antitumor efficacy in the subcutaneous pancreatic cancer model and a K-ras-p53 mutant-transgenic pancreatic cancer model after systemic delivery, with induction of long-term antitumor immunity. The antitumor efficacy of VVLDTK-IL10 was dependent on CD4 þ and CD8 þ , but not NK cells. Clearance of VVLDTK-IL10 was reduced at early time points compared with the control virus. Treatment with VVLDTK-IL10 resulted in a reduction in virus-specific, but not tumor-specific CD8 þ cells compared with VVLDTK. Conclusions: These results suggest that VVLDTK-IL10 has strong potential as an antitumor therapeutic for pancreatic cancer.
Vaccinia virus has been shown to efficiently infect tumor cells. Therefore, vaccinia virus represents a potentially safe and effective antitumor agent against ovarian cancer. Here, we assessed the ability of vaccinia virus to preferentially infect and control both human and murine ovarian tumors in vivo. We used the non-invasive luminescence imaging system to monitor the infection and suppression of ovarian tumors by vaccinia in live mice. Our data indicated that vaccinia was able to effectively infect and kill both human and murine ovarian tumors. Vaccinia virus administered to mice intraperitoneally was specifically targeted to the murine or human ovarian tumors and led to antitumor responses. These findings suggest that vaccinia virus is capable of selectively targeting and controlling ovarian tumors. Thus, intraperitoneal injection with vaccinia virus may provide a potentially effective strategy for treating advanced-stage ovarian cancers.
Recombinant viruses can produce cytokines in tumors mobilizing an immune response to tumor cells. In this study, the authors investigated gene expression, in vivo antitumor efficacy, and safety of attenuated recombinant vaccinia virus (rVV) carrying murine cytokine genes interleukin (IL)-2 (rVV-mIL-2), IL-12 (rVV-mIL-12), and both IL-2 and IL-12 (rVV-2-12) in an athymic nude mice model. Significant tumor inhibition (p < 0.05) was observed in a preestablished subcutaneously implanted C6 glioma model using rVVs at doses ranging from 10(2) to 10(7) plaque forming units (PFU). An antitumor effect did not depend on the dose of the rVV-mIL-2 and rVV-mIL-12 viruses. All constructed rVVs induced a high level of cytokine expression in vitro and in vivo. Most groups injected with high doses of recombinant viruses encoding cytokine genes (10(5) to 10(7) PFU) showed signs of cytokine toxicity, whereas in the low-dose treatment groups (10(2) to 10(3) PFU) toxicity was greatly reduced. The antitumor activity of rVV-mIL-12 was associated with increases in both the percentage and number of natural killer T cells in the spleen. Local detection of interferon-y and tumor necrosis factor-alpha was also correlated with tumor growth arrest induced by the treatment. High-dose VV control vector per se induced tumor inhibition by activating Mac-1+ cells in blood, but the antitumor effect was less pronounced compared with rVV-carrying cytokine genes (p < 0.05). These results suggest that attenuated recombinant strains of VV at low doses may potentially be efficient vectors for cancer immunotherapy.
Oral administration of autoantigens and allergens can delay or suppress clinical disease in experimental autoimmune and allergic disorders. However, repeated feeding of large amounts of the tolerogens is required over long periods and is only partially effective in animals systemically sensitized to the ingested antigen. Enhanced suppression of type 1 autoimmune diabetes insulitis and hyperglycemia was demonstrated in both naive and immune animals following oral inoculation with plant-based antigens coupled to the cholera toxin B subunit (CTB). Thus, plant-synthesized antigens linked to the CTB adjuvant, can enhance suppression of inflammatory TH1 lymphocyte-mediated autoreactivity in both naive and immune animals. To stimulate adjuvant-autoantigen fusion protein biosynthesis in the gut mucosae, the authors evaluated oral inoculation of juvenile non-obese diabetic (NOD) mice with recombinant vaccinia virus (rVV) expressing fusion genes encoding CTB linked to the pancreatic islet autoantigens proinsulin (INS) and a 55-kDa C-terminal peptide from glutamate decarboxylase (GAD55). Hyperglycemia in both rVV-CTB:: INS and rVV-CTB:: GAD inoculated mice was substantially reduced in comparison with the uninoculated mouse control. Oral inoculation with rVV carrying the CTB::INS fusion gene generated a significant reduction in insulitis. An increase in IgG1 in comparison with IgG2c antibody isotype titers in rVV-CTB::INS infected mice suggested possible activation of autoantigen specific Th2 lymphocytes. The experimental results demonstrate feasibility of using vaccinia virus oral delivery of adjuvanted autoantigens to the mucosae of prediabetic mice for suppression and therapy of type 1 autoimmune diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.