Transient receptor potential vanilloid (TRPV) channels function to maintain the dynamic balance of calcium signaling and calcium metabolism in bones. The goal of this study was to determine the potential role of TRPV6 in regulation of chondrocytes. The level of TRPV6 expression was analyzed by western blot in articular cartilage derived from the knee joints of osteoarthritis (OA) rat models and OA patients. Bone structure and osteoarthritic changes in the knee joints of TRPV6 knockout mice were examined using micro-computed and histological analysis at the age of 6 and 12 months old. Furthermore, to investigate the effects of TRPV6 on chondrocyte extracellular matrix secretion, the release of matrix degrading enzymes, cell proliferation, and apoptosis, we decreased and increased TRPV6 expression in chondrocytes with lentiviral constructs encoding shRNA targeting TRPV6 and encoding TRPV6, respectively. The results showed that the level of TRPV6 expression in an OA rat model was markedly down-regulated. TRPV6 knockout mice showed severe osteoarthritis changes, including cartilage fibrillation, eburnation, and loss of proteoglycans. In addition, deficiency of TRPV6 clearly affected chondrocyte function, such as extracellular matrix secretion, the release of matrix degrading enzymes, cell proliferation, and apoptosis. Taken together, our results implicated that TRPV6 channel, as a chondro-protective factor, was involved in the pathogenesis of OA.