In computed tomography (CT)-guided interventions (CTIs), physicians are close to a source of scattered radiation. The physician and staff are at high risk of radiation-induced injury (cataracts). Thus, dose-reducing measures for physicians are important. However, few previous reports have examined radiation doses to physicians in CTIs. This study evaluated the radiation dose to the physician and medical staff using multi detector (MD)CT-fluoroscopy, and attempted to understand radiation-protection and -reduction methods. The procedures were performed using an interventional radiology (IVR)-CT system. We measured the occupational radiation dose (physician and nurse) using a personal dosimeter in real-time, gathered CT-related parameters (fluoroscopy time, mAs, CT dose index (CTDI), and dose length product (DLP)), and performed consecutive 232 procedures in CT-guided biopsy. Physician doses (eye lens, neck, and hand; μSv, average ± SD) in our CTIs were 39.1 ± 36.3, 23.1 ± 23.7, and 28.6 ± 31.0, respectively. Nurse doses (neck and chest) were lower (2.3 ± 5.0 and 2.4 ± 4.4, respectively) than the physician doses. There were significant correlations between the physician doses (eye and neck) and related factors, such as CT-fluoroscopy mAs (eye dose: r = 0.90 and neck dose: r = 0.83). We need to understand the importance of reducing/optimizing the dose to the physician and medical staff in CTIs. Our study suggests that physician and staff doses were not significant when the procedures were performed with the appropriate radiation protection and low-dose techniques.