Flexible and printed biosensor devices can be used in wearable and disposable sensing systems for the daily management of health conditions. Organic thin-film transistors (OTFTs) are promising candidates for constructing such systems. Moreover, the integration of organic electronic materials and biosensors is of extreme interest owing to their mechanical and chemical features. To this end, the molecular recognition chemistry-based design for the interface between sensor devices and analyte solution is crucial to obtain accurate and reproducible sensing signals of targets, though little consideration has been given to this standpoint in the field of device engineering. Here, we report a printed OTFT on a 1 μm-thick film functionalized with a sensing material. Importantly, the fabricated device quantitatively responds to the addition of a protein immunological marker. These results provide guidelines for the development of effective healthcare tools.