In many taxa, females lay eggs in the nests of other conspecifics. To determine the conditions under which conspecific brood parasitism develops, it is necessary to identify parasitic offspring and the females who produce them; however, for most systems parasitism can be difficult to observe and most genetic approaches have relatively low resolving power. In this study, we used protein fingerprinting from egg albumen and 10 microsatellite loci to genetically match parasitic ducklings to their mothers in a population of ruddy ducks (Oxyura jamaicensis). We found that 67% of nests contained parasitic offspring, and we successfully identified their mothers in 61% of the cases. Of the parasitic females identified, 77% also had nests of their own (i.e. a dual tactic, where females both nest and lay parasitically), and we found no evidence that parasitic females pursued a specialist (parasitism only) tactic. We also found that parasitic egg laying was not influenced by nest loss, predation or female condition. Thus, in contrast to most waterfowl studied to date, female ruddy ducks appear to lay parasitic eggs whenever the opportunity arises.