We have previously shown that 24,25-(OH)2D3 plays a major role in resting zone (RC) chondrocyte differentiation and that this vitamin D metabolite regulates protein kinase C (PKC). The aim of the present study was to identify the signal transduction pathway used by 24,25-(OH)2D3 to stimulate PKC activation. Confluent, fourth passage RC cells from rat costochondral cartilage were used to evaluate the mechanism of PKC activation. Treatment of RC cultures with 24,25-(OH)2D3 for 90 min produced a dose-dependent increase in diacylglycerol (DAG). Addition of R59022, a diacylglycerol kinase inhibitor, significantly increased PKC activity in cultures treated with 24,25-(OH)2D3. Addition of dioctanoylglycerol (DOG) to plasma membranes isolated from RC increased PKC activity 447-fold. Addition of pertussis toxin or cholera toxin to control cultures elevated basal PKC activity. When added together with 10(-9) M 24,25-(OH)2D3, there was an additive effect on PKC activity but in cultures treated with 10(-8) M 24,25-(OH)2D3, only the hormone-dependent stimulation of PKC was observed. The phospholipase C inhibitor, U73-122, had no effect on PKC activity, indicating that the DAG produced in response to 24,25-(OH)2D3 is not derived from phosphatidylinositol. Addition of the tyrosine kinase inhibitor, genistein, also had no effect on 24,25-(OH)2D3-stimulated PKC, further supporting the hypothesis that phospholipase C is not involved in the mechanism and that phospholipase D is responsible for the increase in DAG production. Phospholipase A2 inhibitors, quinacrine and AACOCF3, and the cyclooxygenase inhibitor indomethacin increased PKC activity in the RC cultures. Exogenous PGE2, one of the downstream products of phospholipase A2 action, inhibited PKC activity. These results suggest that 24,25-(OH)2D3 regulates PKC activity by two distinct phospholipid-dependent mechanisms: production of DAG via phospholipase D and inhibition of the production of PGE2 via inhibition of phospholipase A2 and cyclooxygenase.