Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O2 plasma etching and anti-static gun treatment. O2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 minute. The anti-static gun treatment flows ions by the electrode surface; two triggers of the anti-static gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased three-fold after O2 plasma etching and four-fold after anti-static gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the anti-static gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O2 plasma etching provided better resistance to fouling than unmodified or anti-static gun treated CNTYMEs. Overall, O2 plasma etching and anti-static gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.