Postoperative neurocognitive disorders (po-NCD), including postoperative delirium (POD) and delayed neurocognitive recovery (dNCR), are common in geriatric surgical patients. However, the ideal diagnostic biomarkers to predict individual risks of po-NCDs have not been identified. In this study, proteomic analysis was used to detect dysregulated proteins in three cognitive-related brain regions, the hippocampus, prefrontal cortex, and temporal lobe, of aged dNCR rats. The common affected proteins in these three brain regions were further verified by real-time polymerase chain reaction and western blotting. Furthermore, serum samples from aged rats with dNCR and elderly hip fracture patients with POD were also assessed with enzyme linked immunosorbent assays to investigate the biomarker potential of these dysregulated proteins. The increased expression levels of haptoglobin, caseinolytic protease (ClpP), and alpha-2 macroglobulin (A2M) as well as decreased expression levels of 14-3-3β/α and biliverdin reductase-A (BVR-A) were validated by proteomic analysis in the hippocampus, prefrontal cortex, and temporal lobe of aged dNCR rats. The increased expression of haptoglobin and decreased expression of 14-3-3β/α were further demonstrated in the three brain regions by western blotting. Moreover, increased levels of S100A6 and BVR-A in the hippocampus, S100A6 in the prefrontal cortex, and A2M in the temporal lobe were also observed. More intriguingly, both decreased serum 14-3-3β/α and increased A2M in geriatric POD patients as well as decreased serum ClpP in aged dNCR rats were verified. These results not only indicate potential diagnostic biomarkers for po-NCD but also provide directions for further pathological investigations.Clinical Trial Registration:www.ClinicalTrials.gov, identifier [ChiCTR1900027393].