Background In the cuprizone model of multiple sclerosis, de-and remyelination can be studied without major interference from the adaptive immune responses. Since previous proteomic studies did not focus on the corpus callosum, where cuprizone causes the most pronounced demyelination, we performed a bottom up proteomic analysis on this brain region. Methods Eight week-old mice treated with 0.2% cuprizone, for 4 weeks and controls (C) were sacrificed after termination of the treatment (4wD), and 2 (2dR) or 14 (2wR) days later. Homogenates of dissected corpus callosum were analysed by quantitative proteomics. For data processing, clustering, gene ontology analysis, and regulatory network prediction, we used Perseus, PANTHER and Ingenuity Pathway Analysis softwares, respectively. Results We identified 4886 unmodified, single-or multi phosphorylated and/or gycosylated (PTM) proteins. Out of them, 191 proteins were differentially regulated in at least one experimental group. We found 57 proteins specific for demyelination, 27 for early-and 57 for late remyelinationwhile 36 proteins were affected in two, and 23 proteins in all three groups. Phosphorylation represented 92% of the post translational modifications among differentially regulated modified (PTM) proteins with decreased level, while it was only 30% of the PTM proteins with increased level. Gene ontology analysis could not classify the demyelination specific proteins into any biological process category, while allocated the remyelination specific ones to nervous system development and myelination as the most specific subcategory. We also identified a protein network in experimental remyelination, and the gene