Roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system were proposed1,2,. Here we show that suppression of ROS diminished pro-opiomelanocortin (POMC) cell activation and promoted the activity of neuropeptide Y- (NPY)/agouti related peptide- (AgRP) neurons and feeding, whereas ROS activated POMC neurons and reduced feeding. ROS in POMC neurons were positively correlated with leptin levels in lean and ob/ob animals a relationship diminished in diet-induced obese (DIO) mice. High fat feeding resulted hypothalamic proliferation of peroxisomes and elevated PPARγ mRNA levels. Peroxisome proliferation in POMC neurons by the PPARγ agonist, rosiglitazone, decreased ROS levels and increased food intake in lean mice on high fat diet. Suppression of peroxisome proliferation in the hypothalamus by the PPAR antagonist, GW9662, increased ROS and c-fos expression in POMC neurons, reversed high fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and, resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and pStat3 expression in POMC neurons and reduced feeding of DIO animals. These observations unmask a previously unknown hypothalamic cellular event associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.
The anorexigenic neuromodulator α-melanocyte-stimulating hormone (α-MSH; referred to here as α-MSH 1-13 ) undergoes extensive posttranslational processing, and its in vivo activity is short lived due to rapid inactivation. The enzymatic control of α-MSH 1-13 maturation and inactivation is incompletely understood. Here we have provided insight into α-MSH 1-13 inactivation through the generation and analysis of a subcongenic mouse strain with reduced body fat compared with controls. Using positional cloning, we identified a maximum of 6 coding genes, including that encoding prolylcarboxypeptidase (PRCP), in the donor region. Realtime PCR revealed a marked genotype effect on Prcp mRNA expression in brain tissue. Biochemical studies using recombinant PRCP demonstrated that PRCP removes the C-terminal amino acid of α-MSH 1-13 , producing α-MSH 1-12 , which is not neuroactive. We found that Prcp was expressed in the hypothalamus in neuronal populations that send efferents to areas where α-MSH 1-13 is released from axon terminals. The inhibition of PRCP activity by small molecule protease inhibitors administered peripherally or centrally decreased food intake in both wild-type and obese mice. Furthermore, Prcp-null mice had elevated levels of α-MSH 1-13 in the hypothalamus and were leaner and shorter than the wild-type controls on a regular chow diet; they were also resistant to high-fat diet-induced obesity. Our results suggest that PRCP is an important component of melanocortin signaling and weight maintenance via control of active α-MSH 1-13 levels.
The recently proposed track-density imaging (TDI) technique was introduced as a means to achieve super-resolution using diffusion MRI. This technique is able to increase the spatial resolution of the reconstructed images beyond the acquired MRI resolution by incorporating information from whole-brain fibre-tracking results. It not only achieves super-resolution, but also provides very high anatomical contrast with a new MRI contrast mechanism. However, the anatomical informationcontent of this novel contrast mechanism has not yet been validated. In this work, we perform such
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.