We present recent progress on hot-wire deposited thin film solar cells and applications of silicon nitride. The cell efficiency reached for μc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.5%, in line with the state-of-the-art level for μc-Si:H n-i-p's for any method of deposition. Such cells, used in triple junction cells together with hot-wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.5% efficiency. The single junction μc-Si:H n-i-p cell is entirely stable under prolonged light soaking. The triple junction cell, including protocrystalline i-layers, is within 3% stable, due to the limited thicknesses of the two top cells. The application of SiN x :H at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency. We have also achieved record high deposition rates of 7.3 nm/s for transparent and dense SiN x ;H. Hot-wire SiN x :H is likely to be the first large commercial application of the Hot Wire CVD (Cat-CVD) technology.