Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower than the band gap of the solar cell are converted to higher energy photons. These higher photons are directed back to the solar cell and absorbed, thus increasing the efficiency. Different types of upconverter materials are investigated, based on luminescent ions or organic molecules. Proof of principle experiments with lanthanide ion based upconverters have indicated that the benefit of an upconversion layer is limited by the high light intensities needed to reach high upconversion quantum efficiencies. To address this limitation, upconverter materials may be combined with quantum dots or plasmonic particles to enhance the upconversion efficiency and improve the feasibility of applying upconverters in commercial solar cells.
Non-doped as well as titanium and lutetium doped zirconia (ZrO 2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti 3+ e g t 2g transition. The persistent luminescence originates from the same Ti 3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature.
a b s t r a c tWe present a cross-sectional transmission electron microscopy study of a set of hydrogenated nanocrystalline silicon n-i-p solar cells deposited by hot-wire chemical vapour deposition on Corning glass substrates coated with ZnO-covered Ag layers with various surface roughnesses. Strip-like structural defects (voids and low-density areas) are observed in the silicon layers originating from micro-valleys of Ag grains. A correlation between the opening angles of the textured surface and the appearance of these strips was found. We propose that in order to grow high-quality hydrogenated nano-crystalline silicon absorber layers for solar cell applications, the morphology of the Ag surface is a critical property, and the micro-valleys at the ZnO surface with an opening angle smaller than around 1101 should be avoided.
Crystalline silicon surface passivation by amorphous silicon deposited by three different chemical vapor deposition ͑CVD͒ techniques at low ͑T ϳ 130°C͒ temperatures is compared. For all three techniques, surface recombination velocities ͑SRVs͒ are reduced by two orders of magnitude after prolonged thermal annealing at 200°C. This reduction correlates with a decreased dangling bond density at the amorphous-crystalline interface, indicating that dangling bond saturation is the predominant mechanism. All three deposition methods yield excellent surface passivation. For a-Si:H layers deposited by radio frequency plasma enhanced CVD, we obtain outstanding carrier lifetimes of 10.3 ms, corresponding to SRVs below 1.32 cm/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.