Recently, the peptide(or protein)-polymer hybrid materials (PPs) were sought in many research areas as potential building blocks for assembling nanostructures in selective solvents. In PPs, the facile routes of preparing well-defined peptide-polymer bio-conjugates and their specific activities in various applications are important issues. Our strategy to prepare the peptide-polymer hybrid materials was to combine atom transfer radical polymerization (ATRP) method with solid phase peptide synthesis. The standard solid phase peptide synthesis method was employed to prepare the PYGK (proline-tyrosine-glycine-lysine) peptide. PYGK is an analogue peptide, PFGK (proline-phenylalanine-glycine-lysine), which interacted with plasminogen in fibrinolysis. The peptide and the peptide-initiator were characterized with MALDI-TOF mass spectrometry and 1 H NMR spectrometer. The peptide-polymer, pSt-PYGK was characterized by GPC, IR, 1 H NMR spectrometer and TLC. Spherical micellar aggregates were determined by TEM and SEM. Current synthesis methodology suggested opportunities to create the well-defined peptide-polymer hybrid materials with specific binding activity.