-A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time-and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct; however, current "omics" technology can clarify overall changes occurring in the cells and tissues after treating animals with drugs and chemicals, integrate them and discuss the results. In the present review, we will discuss chemical-induced similar changes of heme synthesis and degradation, and of P450s and finally convergence to similar or different directions.