An extension of the AGT relation from two to three dimensions begins from connecting the theory on domain wall between some two S-dual SYM models with the 3d Chern-Simons theory. The simplest kind of such a relation would presumably connect traces of the modular kernels in 2d conformal theory with knot invariants. Indeed, the both quantities are very similar, especially if represented as integrals of the products of quantum dilogarithm functions. However, there are also various differences, especially in the "conservation laws" for integration variables, which hold for the monodromy traces, but not for the knot invariants. We also discuss another possibility: interpretation of knot invariants as solutions to the Baxter equations for the relativistic Toda system. This implies another AGT like relation: between 3d Chern-Simons theory and the Nekrasov-Shatashvili limit of the 5d SYM.