With the rapid development of intelligent algorithm and image processing technology, the limitations of traditional image processing methods are more and more obvious. Based on this, this paper studies a new pattern of sparse representation optimization of image Gaussian mixture feature based on convolution neural network, and designs a sparse representation system model of vehicle detection image based on convolution neural network. The vehicle image data is collected from many aspects, and the convolution neural network is used for comprehensive analysis and evaluation. The model can extract the feature information of the vehicle detection image better by making the scheme of the real-time vehicle detection image and according to the image features and convolution neural network algorithm. The results show that the Gaussian mixture feature sparse representation optimization model based on convolution neural network has the advantages of high feasibility, high data accuracy and high response speed, which can enhance the processing efficiency of vehicle detection image and improve the utilization of local environmental information in the image.