Background: Pseudomonas aeruginosa is a pathogenic bacterium, causing nosocomial infections with intrinsic and acquired resistance mechanisms to a large group of antibiotics, including β-lactams. This study aimed to determine the susceptibility pattern to selected antibiotics and to index the first reported β-lactamases gene (extended spectrum β-lactamases (ESBLs) genes and class C β-lactamases genes) frequency in Ps. aeruginosa in Khartoum State, Sudan. Methods: 121 Ps. aeruginosa clinical isolates from various clinical specimens were used in this cross-sectional study conducted in Khartoum State. A total of 80 isolates were confirmed as Ps. aeruginosa through conventional identification methods and species-specific primers (the remaining 40 isolates were other bacterial species). The susceptibility pattern of the confirmed isolates to selected antibiotics was done following the Kirby Bauer disk diffusion method. Multiplex PCR was used for detection of seven β-lactamase genes (blaTEM, blaSHV, blaCTXM-1, blaVEB, blaOXA-1, blaAmpC and blaDHA). Results: Of the 80 confirmed Ps. aeruginosa isolates, 8 (10%) were resistant to Imipenem while all isolates were resistant to Amoxicillin and Amoxyclav (100%). A total of 43 (54%) Ps. aeruginosa isolates were positive for ESBLs genes, while 27 (34%) were positive for class C β-lactamases, and 20 (25%) were positive for both classes. Frequency of ESBLs genes was as follows: blaTEM, 19 (44.2%); blaSHV, 16 (37.2%); blaCTX-M1, 10 (23.3%); blaVEB, 14 (32.6%); and blaOXA-1, 7 (16.3%). Occurrence of class C β-lactamases genes was blaAmpC 22 (81.5%) and blaDHA 8 (29.6%). In total, 3 (11.1%) isolates were positive for both blaAmpC and blaDHA genes. Conclusion: Ps. aeruginosa isolates showed a high rate of β-lactamases production, with co-resistance to other antibiotic classes. The lowest resistance rate of Ps. aeruginosa was to Imipenem followed by Gentamicin and Ciprofloxacin. No statistically significant relationship between production of β-lactamases in Ps. aeruginosa and resistance to third generation cephalosporins was found.