Glycogen is an important component of whole-body glucose metabolism. MGSKO mice lack skeletal muscle glycogen due to disruption of the GYS1 gene, which encodes muscle glycogen synthase. MGSKO mice were 5-10% smaller than wild-type littermates with less body fat. They have more oxidative muscle fibers and, based on the activation state of AMP-activated protein kinase, more capacity to oxidize fatty acids. Blood glucose in fed and fasted MGSKO mice was comparable to wild-type littermates. Serum insulin was lower in fed but not in fasted MGSKO animals. In a glucose tolerance test, MGSKO mice disposed of glucose more effectively than wild-type animals and had a more sustained elevation of serum insulin. This result was not explained by increased conversion to serum lactate or by enhanced storage of glucose in the liver. However, glucose infusion rate in a euglycemic-hyperinsulinemic clamp was normal in MGSKO mice despite diminished muscle glucose uptake. During the clamp, MGSKO animals accumulated significantly higher levels of liver glycogen as compared with wild-type littermates. Although disruption of the GYS1 gene negatively affects muscle glucose uptake, overall glucose tolerance is actually improved, possibly because of a role for GYS1 in tissues other than muscle. Diabetes 54: 3466 -3473, 2005 A fter a meal, glucose is distributed into various tissues of the body where it can be utilized as an energy source or stored as glycogen (1). Glycogen is a branched polymer of glucose residues connected by ␣-1,4-glycosidic linkages formed by the enzyme glycogen synthase (EC 2.4.1.11) and branchpoints formed via ␣-1,6-glycosidic linkages, introduced by the branching enzyme (EC 2.4.1.18). There are two mammalian isoforms of glycogen synthase. One, encoded by the GYS2 gene, appears to be expressed only in liver (2) while a second gene, GYS1, is expressed in skeletal and cardiac muscle as well as adipose tissue, kidney, and brain (3).Estimates of the contribution of skeletal muscle glycogen to glucose disposal after ingestion of carbohydrate vary. In humans, reports of ingested glucose conversion to muscle glycogen range from ϳ40% (4) up to 90% (5). It is widely accepted that muscle is an important site for glucose disposal and one might hypothesize that, in the absence of muscle glycogen, glucose clearance would be impaired. Consistent with this hypothesis, mutations in the GYS1 gene in humans have been implicated in certain diabetic populations with, for example, the Pro442Ala mutation resulting in decreased muscle glycogen synthase activity (6).We recently described the MGSKO mouse, in which the GYS1 gene is disrupted (7). Analysis of MGSKO mice confirmed the long-held supposition that glycogen synthase is required for glycogen synthesis since these animals were devoid of glycogen in cardiac and skeletal muscle (7). In the present study, we analyzed a number of metabolic parameters in the MGSKO mouse, including whole-body glucose metabolism, with an initial hypothesis that mice lacking the ability to synthesize muscl...