Urban air mobility (UAM) has recently increased in popularity as an emerging mode of transportation, covering a wide range of applications, for on-demand or scheduled operations of smaller aircraft, in and around metropolitan areas. Due to its novelty and as it has not yet been implemented, UAM research still faces uncertainties. In particular, there is a need to develop a roadmap for the early implementation of passenger air mobility, aiming to identify the most prominent challenges, opportunities, hazards, and risks, but also to highlight the most promising use cases, or on the contrary, the ones associated with the least benefits compared to the risks or complexity they entail. To answer the previous questions, and therefore address this research gap, this study used a two-round Delphi questionnaire, targeting various stakeholder groups (product owners, policymakers, researchers, consultants, investors), leading to a total of 51 experts, out of which 34 also participated in the second round. In the first round, the main challenges, opportunities, and hazards facing the implementation of passenger UAM were identified. Findings on challenges and opportunities that were dependent on use cases only (as opposed to being dependent on technology or external factors) were then fed back into the second round, which helped evaluate the use cases based both on their complexities, as well as the associated benefits. Accordingly, medical/emergency was identified as the best use case and intracity transport as the worst (in terms of complexity vs. benefits). Similarly, a risk analysis evaluated the potential hazards associated with the implementation of UAM and their impacts on the system viability. Community backlash was found to be the most hazardous one, while malicious passenger behavior and improperly designed infrastructure as the least. Findings from this study can help better understand stakeholders’ opinions, highlighting promising use cases, but also risks to be aware of, constituting therefore a roadmap for future implementation.