Continued high levels spread of SARS-CoV-2 globally enabled accumulation of changes within the Spike glycoprotein, leading to resistance to neutralising antibodies and concomitant changes to entry requirements that increased viral transmission fitness. Herein, we demonstrate a significant change in ACE2 and TMPRSS2 use by primary SARS-CoV-2 isolates that occurred upon arrival of Omicron lineages. Mechanistically we show this shift to be a function of two distinct ACE2 pools based on cleavage or non-cleavage of ACE2 by TMPRSS2 activity. In engineered cells overexpressing ACE2 and TMPRSS2, ACE2 was cleaved by TMPRSS2 and this led to either augmentation or progressive attenuation of pre-Omicron and Omicron lineages, respectfully. In contrast, TMPRSS2 resistant ACE2 restored infectivity across all Omicron lineages through enabling ACE2 binding that facilitated TMPRSS2 spike activation. Therefore, our data support the tropism shift of Omicron lineages to be a function of evolution towards the use of uncleaved pools of ACE2 with the latter consistent with its role as a chaperone for many tissue specific amino acid transport proteins.