The cell imposes multiple barriers to virus entry. However, viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo. Virus entry pathways are largely defined by the interactions between virus particles and their receptors at the cell surface. These interactions determine the mechanisms of virus attachment, uptake, intracellular trafficking, and, ultimately, penetration to the cytosol. Elucidating the complex interplay between viruses and their receptors is necessary for a full understanding of how these remarkable agents invade their cellular hosts.
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal antibodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins representing the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell transmission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver. Hepatitis C virus (HCV) establishes chronic infection in 3%of the world's population, resulting in a progressive liver disease that is one of the leading indications for liver transplantation. HCV has evolved several immune evasion strategies in order to persist within the infected host (15,20,40), including genetic escape from humoral immune responses (25,46). However, functional constraints may restrict antigenic change in some regions of the virally encoded E1E2 envelope glycoproteins, such as the CD81 receptor binding site (9,11,33). The observation that glycoprotein-specific antibodies from chronically infected subjects neutralize the infectivity of laboratory prototype HCV strains yet demonstrate a limited ability to control HCV replication in vivo (40) suggest that additional means of evading antibody responses may exist.How virus particles disseminate within an immune-competent host has been a relatively neglected area of study; however, it is becoming increasingly clear that viruses employ multiple strategies to infect new target cells. Diffusion through the pericellular environment or the vascular circulation introduces a rate-limiting step in virus entry and exposes particles to the humoral immune system. Consequently, a number of viruses have evolved direct cell-to-cell modes of transmission that maximize particle delivery, often in a neutralizing antibody (nAb)-resistant manner (reviewed in reference 30).We (44) and others (48) previously reported that HCV strain JFH-1 could be transmitted via cell-free and cell-to-cell routes in vitro. We extend these observations and show that disruption of HCV particle assembly or physical separation of target and producer cells ablates transmission, demonstrating that intact virions are transferred via cell-cell conta...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.