Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal antibodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins representing the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell transmission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver. Hepatitis C virus (HCV) establishes chronic infection in 3%of the world's population, resulting in a progressive liver disease that is one of the leading indications for liver transplantation. HCV has evolved several immune evasion strategies in order to persist within the infected host (15,20,40), including genetic escape from humoral immune responses (25,46). However, functional constraints may restrict antigenic change in some regions of the virally encoded E1E2 envelope glycoproteins, such as the CD81 receptor binding site (9,11,33). The observation that glycoprotein-specific antibodies from chronically infected subjects neutralize the infectivity of laboratory prototype HCV strains yet demonstrate a limited ability to control HCV replication in vivo (40) suggest that additional means of evading antibody responses may exist.How virus particles disseminate within an immune-competent host has been a relatively neglected area of study; however, it is becoming increasingly clear that viruses employ multiple strategies to infect new target cells. Diffusion through the pericellular environment or the vascular circulation introduces a rate-limiting step in virus entry and exposes particles to the humoral immune system. Consequently, a number of viruses have evolved direct cell-to-cell modes of transmission that maximize particle delivery, often in a neutralizing antibody (nAb)-resistant manner (reviewed in reference 30).We (44) and others (48) previously reported that HCV strain JFH-1 could be transmitted via cell-free and cell-to-cell routes in vitro. We extend these observations and show that disruption of HCV particle assembly or physical separation of target and producer cells ablates transmission, demonstrating that intact virions are transferred via cell-cell conta...
Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA-dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti-HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV-infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell-to-cell spread of virus. Conclusion: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarin's antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell.
cHepatitis C virus (HCV) leads to progressive liver disease and hepatocellular carcinoma. Current treatments are only partially effective, and new therapies targeting viral and host pathways are required. Virus entry into a host cell provides a conserved target for therapeutic intervention. Tetraspanin CD81, scavenger receptor class B member I, and the tight-junction proteins claudin-1 and occludin have been identified as essential entry receptors. Limited information is available on the role of receptor trafficking in HCV entry. We demonstrate here that anti-CD81 antibodies inhibit HCV infection at late times after virus internalization, suggesting a role for intracellular CD81 in HCV infection. Several tetraspanins have been reported to internalize via motifs in their C-terminal cytoplasmic domains; however, CD81 lacks such motifs, leading several laboratories to suggest a limited role for CD81 endocytosis in HCV entry. We demonstrate CD81 internalization via a clathrin-and dynamin-dependent process, independent of its cytoplasmic domain, suggesting a role for associated partner proteins in regulating CD81 trafficking. Live cell imaging demonstrates CD81 and claudin-1 coendocytosis and fusion with Rab5 expressing endosomes, supporting a role for this receptor complex in HCV internalization. Receptor-specific antibodies and HCV particles increase CD81 and claudin-1 endocytosis, supporting a model wherein HCV stimulates receptor trafficking to promote particle internalization. H epatitis C virus (HCV) is a member of the Flaviviridae familyand an important human pathogen that leads to progressive liver disease and is a leading indication for liver transplantation. At present, there is no HCV vaccine, and the only approved therapy, interferon and ribavirin, has limited efficacy. Unsurprisingly, there is an international effort to develop new antiviral agents and vaccines that are effective across all major HCV genotypes. A number of drugs targeting HCV replicase enzymes are in development; however, recent trials show a rapid appearance of drugresistant viruses (for reviews, see references 1 and 52). The essential and conserved nature of the entry step in the HCV life cycle offers an attractive target for therapeutic intervention.Virus entry into a host cell is defined by specific interaction(s) with cell surface proteins or receptors that confer host and cellular tropism (66). Recent advances in the development of in vitro systems to study the HCV life cycle have demonstrated an essential role for tetraspanin CD81 (54), scavenger receptor BI (SR-BI) (58), and tight-junction protein occludin (3, 42, 55) and several members of the claudin family (21, 47, 76) in virus entry. Lowdensity lipoprotein receptor and cell surface glycosaminoglycans, including heparan sulfate, have been reported to play a role in the initial attachment of HCV to the cell surface (2, 49). Coexpression of human CD81, SR-BI, occludin, and claudin-1 renders nonliver cells permissive for HCV entry, demonstrating that these four proteins constitut...
Background & AimsHepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC.MethodsWe assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion.ResultsHCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β). Neutralization of both growth factors shows different roles for VEGF and TGFβ in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle.ConclusionsThese data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment.
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.Hepatitis C virus (HCV) is an enveloped positive-stranded RNA virus and the sole member of the genus Hepacivirus within the Flaviviridae. Approximately 170 million individuals are infected with HCV worldwide, and the majority are at risk for developing serious progressive liver disease. The HCV RNA genome of approximately 9.6 kb encodes a polyprotein of around 3,000 amino acids, which is cleaved by viral and cellular proteases to generate the structural and nonstructural (NS) proteins. The amino terminus of the polyprotein sequence contains the structural proteins including the core, the envelope glycoproteins (GPs) E1 and E2, and p7. The NS proteins including NS2 through NS5 are located at the carboxy terminus of the polyprotein. Much of our current understanding of HCV replication has been gained through the use of genomic replicons (reviewed in reference 7). The recent development of an infectious system allowing the generation of HCV particles in cell culture (HCVcc) has enabled the complete viral life cycle to be explored (63,99,110).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.