BackgroundOsteoclast excessive activation was closely related to bone diseases such as osteoporosis and rheumatoid arthritis. Sec-O-glucosylhamaudol (SOG), an active flavonoid compound derived from the root of divaricate Saposhnikovia, was reported to exhibit analgesic, anti-inflammatory and high 5-lipoxygenase (5-LO) inhibitory effects. However, its effect on osteoclastogenesis and bone resorption remained unclear.MethodsOsteoclast formation, bone resorption pit area formation and F-actin ring formation were examined by TRAP staining, modified Vonkonsa staining and immunofluorescence, respectively. RT-Realtime PCR assay and western blot analysis were performed. siRNA transfection was conducted to silence the expression of 5-LO in cells. LPS-induced bone-loss mice model was prepared and the left and right femurs were collected for Micro-CT and histomorphometric analysis, respectively.ResultsSOG markedly attenuated RANKL-induced osteoclastogenesis through decreasing TRAP activity, F-actin ring formation and bone resorption with reduction of mRNA levels of osteoclastogenesis marker genes such as TRAP, CTSK and DC-STAMP. Our results further indicated that SOG markedly reduced the induction of key transcription factors NFATc1 and c-Fos at both mRNA and protein levels during osteoclastogenesis. In addition, SOG treatment did not alter the transient phosphorylation of NF-κB p65 subunit and MAPKs (p38, ERK1/2 and JNK), AKT and GSK3β by RANKL. Interestingly, our results showed that SOG significantly inhibited the phosphorylation of AKT and GSK3β at middle-late stage of osteoclastogenesis, but did not alter calcineurin catalytic subunit PP2B-Aα expression. GSK3β inhibitor SB415286 could partly reverse inhibition of osteoclastogenesis by SOG. 5-LO knockdown at BMMs also markedly reduced RANKL-induced osteoclastogenesis. In consistent with in vitro results,SOG could significantly improve bone destruction in LPS-induced mice model.ConclusionsSOG attenuated formation and function of osteoclast through suppressing AKT-mediated GSK3β inactivation, and 5-LO catalytic activity. Moreover, SOG prevented LPS-induced bone loss in mice through inhibiting osteoclastogenesis. Taken together, this study provided the evidence that SOG may have a potential therapeutic effect on osteoclast-related bone lysis disease.