By introducing beam-scanning multifocal multiphoton 4Pi-confocal microscopy, we have attained fast fluorescence imaging of live cells with axial super resolution. Rapid scanning of up to 64 pairs of interfering high-angle fields and subsequent confocal detection enabled us to perform three to five times finer optical sectioning than confocal microscopy. In conjunction with nonlinear image restoration, we demonstrate, to our knowledge for the first time, three-dimensional imaging of live eukaryotic cells at an equilateral resolution of Ϸ100 nm. This imaging mode allowed us to reveal the morphology and size of the green fluorescent protein-labeled mitochondrial compartment of live Saccharomyces cerevisiae (bakers' yeast) growing on different carbon sources. Our studies show that mitochondria of cells grown on medium containing glycerol as the only carbon source, as opposed to glucose-grown cells, exhibit a strongly branched tubular reticulum. We determine the average tubular diameter and find that it increases from 339 ؎ 5 nm to 360 ؎ 4 nm when changing from glucose to glycerol, that is, from a fermentable to a nonfermentable carbon source. Moreover, this change is associated with a 2.8-fold increase of the surface of the reticulum, resulting in an average increase in volume of the mitochondrial compartment by a factor of 3.0 ؎ 0.2. F ocused light is the only means by which it is possible to visualize and quantify biochemical processes in a live cell. Catalyzed by the advent of specific exogenous and endogenous markers, such as the green fluorescent protein (GFP) and its mutants, fluorescence-based far-field microscopy has evolved into a powerful tool for elucidating the relationship between cellular structure and function. This fact particularly applies to confocal and multiphoton fluorescence microscopes, which, by providing three-dimensional (3D) images, facilitate quantitative studies in the interior of cells (1). Despite its obvious advantages, the application of far-field microscopy has been seriously restricted. A major reason is the limited spatial resolution that has precluded 3D imaging and the quantitative 3D analysis of submicron-scale cellular compartments.In Fourier space, where the imaging process is expressed in terms of spatial frequencies, the limited resolution of light microscopes is attributed to their inability to grasp and transfer object frequencies higher than about one-half of the reciprocal wavelength (2). In real space, the resolution limit is described by the minimal fluorescence spot size, which for a standard highaperture confocal microscope is Ϸ180 and Ϸ500 nm in the transverse and axial directions, respectively (1). The demand for higher resolution in biological imaging has spurred a number of interesting developments, such as scanning 4Pi-confocal microscopy (3), stimulated emission depletion fluorescence microscopy (4, 5), wide-field I 5 M (6), and combinations of structured illumination with image restoration (7,8).In fluorescence imaging, the mathematical function describing th...