In this work, we present a laser-based process for fabricating a cell electrostimulator. The fabrication methodology comprises two laser processes: a pulse laser deposition (PLD) of an aluminum thin film on soda-lime glass and a laser-based selectively removal of the thin film. The laser set-up for PLD consist of Nd:YVO 4 Rofin Power line 20E (1064 nm wavelength, 20 ns pulse width) focused by a lens of 160 mm focal length inside a vacuum chamber to strike a target of the deposited material. The same laser is used for selectively removing the thin film but focused by a lens of 100 mm focal length. The geometry design is made in CAD-like software. Before microfabrication, a thin aluminum layer (1 μm thickness) is deposited on soda-lime glass using the PLD method. In order to assemble the device, the electrical stimulator is placed between two polycarbonate sheets of 1.5 mm thickness. To prevent any contact with the electric circuit, a thin silicate glass (100 μm) is placed over the electrostimulator. Simulations were performed using ANSYS Maxwell software, verifying that the induced electrical field achieves the minimum for cell stimulation.