Freestanding semiconductor membranes hold significant potential for heterogeneous integration technology and flexible electronics. Remote epitaxy, which leverages electrostatic interactions between epilayers and substrates through two-dimensional (2D) materials such as graphene, offers a promising solution for fabricating freestanding single-crystal membranes. Although the thinness, uniformity, and cleanness of 2D materials need to be meticulously controlled to enable the remote epitaxy of high-quality thin films, attaining such ideal growth templates has been challenging thus far. In this study, we demonstrate a controlled graphitization method to form a pristine graphene buffer layer (GBL) directly on SiC substrates and utilize this GBL template for GaN remote epitaxy. The quasi-two-dimensional GBL layer obtained by the method is completely free of damage or contamination, facilitating strong epitaxial interaction between the GaN epilayer and the SiC substrate. Furthermore, we reveal that a two-step growth of GaN on this GBL template enables the formation of single-crystal GaN epilayers and their exfoliation. Thus, this study represents an important step toward developing high-quality, freestanding semiconductor membranes.