Water supply systems need to be designed in an efficient way, accounting for both construction costs and operational energy expenditures when pumping is required. Since water demand varies depending on the moment’s necessities, especially when it comes to agricultural purposes, water supply systems should also be designed to adequately handle this. This paper presents a straightforward design methodology that using a constant flow rate, the total cost is equivalent to that of the variable demand flow. The methodology is based on the Granados System, which is a very intuitive and practical gradient based procedure. To adapt it to seasonal demand, the concepts of Equivalent Flow Rate and Equivalent Volume are presented and applied in a simple case study. These concepts are computationally straightforward and facilitate the design process of hydraulic drives under demand variability and can be used in multiple methodologies, aside from the Granados System. The Equivalent Flow Rate and Equivalent Volume offer a solution to design procedures that require a constant flow regime, adapting them to more realistic design situations and therefore widening their practical scope.