The postpartum period is associated with many behavioral changes, including a reduction in anxiety, which is thought to be necessary for mothers' ability to appropriately care for infants. In laboratory rats, this reduction in anxiety requires recent contact with pups, but areas of the brain where infant contact influences neural activity to reduce anxiety are mostly unknown. We examined c-fos expression in lactating rats whose pups were removed for 4h to increase mothers' anxiety, or not removed to maintain low anxiety in mothers, followed by exposure to the anxiogenic stimuli of either brief handling or handling followed by exposure to an elevated plus maze. Control animals had their litters removed or not, but no further stimulation. A large number of neural sites traditionally implicated in regulating anxiety in male rats were examined, and similar to what is found in male rats, most showed increased Fos expression after handling and/or elevated plus-maze exposure. Litter presence before testing affected Fos expression due to handling or elevated plus-maze exposure only in the ventral bed nucleus of the stria terminalis, dorsal and ventral preoptic area, ventromedial hypothalamus, lateral habenula, and supramammillary nucleus. Contrary to expectations, prior litter presence was associated with more Fos expression in most of these sites after handling and/or elevated plus-maze stimulation, and only after such stimulation. These sites may be of particular importance for how sensory inputs from infants modulate anxiety and other mood states during the postpartum period.