Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) beta-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor-cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.
Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook x Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.
Until recently, any neuropeptide that directly inhibits gonadotropin secretion had not been identified. We recently identified a novel hypothalamic dodecapeptide that directly inhibits gonadotropin release in quail and termed it gonadotropin-inhibitory hormone (GnIH). The action of GnIH on the inhibition of gonadotropin release is mediated by a novel G protein-coupled receptor in the quail pituitary. This new gonadotropin inhibitory system is considered to be a widespread property of birds and provides us with an unprecedented opportunity to study the regulation of avian reproduction from an entirely novel standpoint. To understand the physiological role(s) of GnIH in avian reproduction, we investigated GnIH actions on gonadal development and maintenance in male quail. Continuous administration of GnIH to mature birds via osmotic pumps for 2 wk decreased the expressions of gonadotropin common alpha and LHbeta subunit mRNAs in a dose-dependent manner. Plasma LH and testosterone concentrations were also decreased dose dependently. Furthermore, administration of GnIH to mature birds induced testicular apoptosis and decreased spermatogenic activity in the testis. In immature birds, daily administration of GnIH for 2 wk suppressed normal testicular growth and rise in plasma testosterone concentrations. An inhibition of juvenile molt also occurred after GnIH administration. These results indicate that GnIH inhibits gonadal development and maintenance through the decrease in gonadotropin synthesis and release. GnIH may explain the phenomenon of photoperiod-induced gonadal regression before an observable decline in hypothalamic GnRH in quail. To our knowledge, GnIH is the first identified hypothalamic neuropeptide inhibiting reproductive function in any vertebrate class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.