Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rosenthal's congestion games constitute one of the few known classes of noncooperative games possessing pure-strategy Nash equilibria. In the network version, each player wants to route one unit of flow on a single path from her origin to her destination at minimum cost, and the cost of using an arc depends only on the total number of players using that arc. A natural extension is to allow for players controlling different amounts of flow, which results in so-called weighted congestion games. While examples have been exhibited showing that pure-strategy Nash equilibria need not exist anymore, we prove that it is actually strongly NP-hard to determine whether a given weighted network congestion game has a purestrategy Nash equilibrium. This is true regardless of whether flow is unsplittable or not. In the unsplittable case, the problem remains strongly NP-hard for a fixed number of players. In addition to congestion games, we provide complexity results on the existence and computability of pure-strategy Nash equilibria for the closely related family of bidirectional local-effect games. Therein, the cost of a player taking a particular action depends not only on the number of players choosing the same action, but also on the number of players settling for (locally) related actions.
Rosenthal's congestion games constitute one of the few known classes of noncooperative games possessing pure-strategy Nash equilibria. In the network version, each player wants to route one unit of flow on a single path from her origin to her destination at minimum cost, and the cost of using an arc depends only on the total number of players using that arc. A natural extension is to allow for players controlling different amounts of flow, which results in so-called weighted congestion games. While examples have been exhibited showing that pure-strategy Nash equilibria need not exist anymore, we prove that it is actually strongly NP-hard to determine whether a given weighted network congestion game has a purestrategy Nash equilibrium. This is true regardless of whether flow is unsplittable or not. In the unsplittable case, the problem remains strongly NP-hard for a fixed number of players. In addition to congestion games, we provide complexity results on the existence and computability of pure-strategy Nash equilibria for the closely related family of bidirectional local-effect games. Therein, the cost of a player taking a particular action depends not only on the number of players choosing the same action, but also on the number of players settling for (locally) related actions.
Most of the existing and foreseen complex networks, such as the Internet, are operated and built by thousands of large and small entities (autonomous agents), which collaborate to process and deliver end-to-end flows originating from and terminating at any of them. The distributed nature of the Internet implies a lack of coordination among its users. Instead, each user attempts to obtain maximum performance according to his own parameters and objectives.Methods from game theory and mathematical economics have been proven to be a powerful modeling tool, which can be applied to understand, control, and efficiently design such dynamic, complex networks. Game theory provides a good starting point for computer scientists in their endeavor to understand selfish rational behavior in complex networks with many agents (players). Such scenarios are readily modeled using techniques from game theory, where players with potentially conflicting goals participate in a common setting with well-prescribed interactions.Nash equilibrium [73,74] distinguishes itself as the predominant concept of rationality in noncooperative settings. So, game theory and its various concepts of equilibria provide a rich framework for modeling the behavior of selfish agents in these kinds of distributed or networked environments; they offer mechanisms to achieve efficient and desirable global outcomes in spite of the selfish behavior.Mechanism design, a subfield of game theory, asks how one can design systems so that agents' selfish behavior results to desired systemwide goals. Algorithmic mechanism design additionally considers computational tractability to the set of concerns of mechanism design. Work on algorithmic mechanism design has focused on the complexity of centralized implementations of game-theoretic mechanisms for distributed optimization problems. Moreover, in such huge and heterogeneous networks, each agent does not have access to (and may not process) complete information. 286 ALGORITHMIC GAME THEORY AND APPLICATIONSThe notion of bounded rationality for agents and the design of corresponding incomplete-information distributed algorithms have been successfully utilized to capture the aspect of lack of global knowledge in information networks.In this chapter, we review some of the most thrilling algorithmic problems and solutions, and corresponding advances, achieved on the account of game theory. The areas addressed are the following.Congestion games A central problem arising in the management of large-scale communication networks is that of routing traffic through the network. However, due to the large size of these networks, it is often impossible to employ a centralized traffic management. A natural assumption to make in the absence of central regulation is that network users behave selfishly and aim at optimizing their own individual welfare. One way to address this problem is to model this scenario as a noncooperative multiplayer game and formalize it using congestion game. Congestion games (either unweighted or weighted) offer ...
Cluster structure in cognitive radio (CR) networks facilitates cooperative spectrum sensing, routing, and other functionalities. Unlicensed channels, which are temporally available for a group of CR users in one area, consolidate the group into a cluster. More available unlicensed channels in a cluster make the cluster more likely to uphold against the licensed users' influence, making clusters more robust. This paper analyzes the problem of how to form robust clusters in a CR network such that CR systems benefit from collaboration within clusters despite intense primary user activity. We give a formal description of the robust clustering problem, prove it to be NP‐hard, and propose both centralized and distributed solutions. The congestion game model is adopted to analyze the process of cluster formation, which not only contributes to the design of the distributed clustering scheme but also provides a guarantee on the convergence to a Nash equilibrium and the convergence speed. The proposed distributed clustering scheme outperforms state‐of‐the‐art in terms of cluster robustness, convergence speed, and overhead. Extensive simulations are presented supporting the theoretical claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.