We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time. We show that if the strategy space of each player consists of the bases of a matroid over the set of resources, then the lengths of all best response sequences are polynomially bounded in the number of players and resources. We also prove that this result is tight, that is, the matroid property is a necessary and sufficient condition on the players' strategy spaces for guaranteeing polynomial-time convergence to a Nash equilibrium.
In addition, we present an approach that enables us to devise hardness proofs for various kinds of combinatorial games, including first results about the hardness of market sharing games and congestion games for overlay network design. Our approach also yields a short proof for the PLS-completeness of network congestion games. In particular, we show that network congestion games are PLS-complete for directed and undirected networks even in case of linear latency functions.
Unlike standard congestion games, weighted congestion games and congestion games with player-specific delay functions do not necessarily possess pure Nash equilibria. It is known, however, that there exist pure equilibria for both of these variants in the case of singleton congestion games, i.e., if the players' strategy spaces contain only sets of cardinality one. In this paper, we investigate how far such a property on the players' strategy spaces guaranteeing the existence of pure equilibria can be extended. We show that both weighted and player-specific congestion games admit pure equilibria in the case of matroid congestion games, i.e., if the strategy space of each player consists of the bases of a matroid on the set of resources. We also show that the matroid property is the maximal property that guarantees pure equilibria without taking into account how the strategy spaces of different players are interweaved. Additionally, our analysis of player-specific matroid congestion games yields a polynomial time algorithm for computing pure equilibria. We also address questions related to the convergence time of such games. For player-specific matroid congestion games, in which the best response dynamics may cycle, we show that from every state there exists a short sequences of better responses to an equilibrium. For weighted matroid congestion games, we present a superpolynomial lower bound on the convergence time of the best response dynamics showing that players do not even converge in pseudopolynomial time
Various economic interactions can be modeled as two-sided matching markets. A central solution concept to these markets are stable matchings, introduced by Gale and Shapley. It is well known that stable matchings can be computed in polynomial time, but many real-life markets lack a central authority to match agents. In those markets, matchings are formed by actions of selfinterested agents, whose behavior is often modeled by Nash dynamics such as best and better response dynamics. In this note, we summarize recent results on Nash dynamics in two-sided markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.