This work concerns the use of biometric features, resulting from the look of a face, for the verification purposes. Different methods of selection and feature analysis during face recognition are presented here. The description contains mainly analysis possibilities and also identity verification based on asymmetric facial features-in later stages. The new verification method has been introduced based on designated characteristic points. These points were designated through appropriate coded information about facial asymmetry as observation vectors and recognition using hidden Markov models. The advantage of these models is that we can use vectors of different lengths. Such vectors appear in incomplete data when all points cannot be located.