Lipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as "novel regulator of adipogenesis". This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved-together with perilipins-in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.