Pyrimidine nucleotide metabolism in rat hepatocytes was studied by measurement of the labelling kinetics of the various intermediates after double labelling with [14C]orotic acid and [3H]cytidine, the precursors for the de novo and the salvage pathways respectively. For the uridine nucleotides, differences were found for the 14C/3H ratios in the UDP-sugars, in UMP (of RNA) and in their precursor UTP, suggesting the existence of separated flows of the radioactive precursors through the de novo and the salvage pathways. Higher ratios in the UDP-sugars, which are synthesized in the cytoplasm, and a lower ratio in UMP (of RNA) relative to the 14C/3H ratio in UTP indicated that UTP derived from orotic acid is preferentially used for the cytoplasmic biosynthesis of the UDP-sugars. Uridine, derived from cytidine, is preferentially used for the nuclear-localized synthesis of RNA. In contrast to these findings, the 14C/3H ratios in the cytidine derivatives CMP-NeuAc and CMP (of RNA), and in the liponucleotides CDP-choline and CDP-ethanolamine, were