We report here that fucosylated epitopes such as Lewis x , LacdiNAc, fucosylated LacdiNAc (LDN-F) and GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAc (LDN-DF) are expressed by schistosomes throughout their life cycle. These four epitopes were enzymatically synthesized and coupled to bovine serum albumin to yield neoglycoproteins. Subsequently these neoglycoproteins were used to probe a panel of 188 monoclonal antibodies obtained from infected or immunized mice, in ELISA and surface plasmon resonance analysis. Of these antibodies, 25 recognized one of the fucosylated structures synthesized, indicating that these structures are immunogenic during infection. The MAbs identified could be subdivided in four different groups based on the recognition of either the Lewis x -, the LacdiNAc-, the LDN-DF-, or both the LDN-F-and LDN-DF epitope. These monoclonal antibodies were then used to investigate the localization of the fucosylated epitopes in various stages of Schistosoma mansoni using indirect immunofluorescence. Lewis x epitopes were mainly found in the gut and on the tegument of adult worms, on egg shells, and on the oral sucker of cercariae. The LacdiNAc epitope was expressed on the tegument of adult worms, on miracidia, and on the oral sucker of cercariae. In contrast, LDN-DF epitopes were mainly present in the excretory system of adult worms, on miracidia and on whole cercariae. These also stained positive with the LDN-F/LDN-DF epitope antibodies, while whole parenchyma reacted characteristically only with the latter antibodies. The identification of different carbohydrate structures in various stages of schistosomes may lead to a better understanding of the function of glycans in the immune response during infection.
We have expressed the Neisseria meningitidis lgtA gene at a high level in Escherichia coli. The encoded beta-N-acetylglucosaminyltransferase, referred to as LgtA, which in the bacterium is involved in the synthesis of the lacto-N-neo-tetraose structural element of the bacterial lipooligosaccharide, was obtained in an enzymatically highly active form. This glycosyltransferase appeared to be unusual in that it displays a broad acceptor specificity toward both alpha- and beta-galactosides, whether structurally related to N- or O-protein-, or lipid-linked oligosaccharides. Product analysis by one- and two-dimensional 400 MHz 1H- and 13C-NMR spectroscopy reveals that LgtA catalyzes the introduction of GlcNAc from UDP-GlcNAc in a beta 1-->3-linkage to accepting Gal residues. The enzyme can thus be characterized as a UDP-GlcNAc:Gal alpha/beta-R beta 3-N-acetylglucosaminyltransferase. Although lactose is a highly preferred acceptor substrate the recombinant enzyme also acts efficiently on monomeric and dimeric N-acetyllactosamine revealing its potential value in the synthesis of polylactosaminoglycan structures in enzyme assisted procedures. Furthermore, LgtA shows a high donor promiscuity toward UDP-GalNAc, but not toward other UDP-sugars, and can catalyze the introduction of GalNAc in beta 1-->3-linkage to alpha- or beta-Gal in the acceptor structures at moderate rates. LgtA therefore shows promise to be a useful catalyst in the preparative synthesis of both GlcNAc beta 1-->3Gal and GalNAc beta 1-->3Gal linkages.
The acceptor specificity of recombinant full-length, membrane-bound fucosyltransferases, expressed in COS-7 cells, and soluble, protein-A chimeric forms of alpha 1,3-fucosyltransferase (Fuc-T) III, Fuc-TIV, and Fuc-TV was analyzed toward a broad panel of oligosaccharide, glycolipid, and glycoprotein substrates. Our results on the full-length enzymes confirm and extend previous studies. However, chimeric Fuc-Ts showed increased activity toward glycoproteins, whereas chimeric Fuc-TIII and Fuc-TV had a decreased activity with glycosphingolipids, compared to the full-length enzymes. Unexpectedly, chimeric Fuc-TV exhibited a GDP-fucose hydrolyzing activity. In substrates with multiple acceptor sites, the preferred site of fucosylation was identified. Fuc-TIII and Fuc-TV catalyzed fucose transfer exclusively to OH-3 of glucose in lacto-N-neotetraose and lacto-N-tetraose, respectively, as was demonstrated by 1H NMR spectroscopy. Thin layer chromatography immunostaining revealed that FucT-IV preferred the distal GlcNAc residue in nLc6Cer, whereas Fuc-TV preferred the proximal Gl-cNAc residue. Incubation of Fuc-TIV or Fuc-TV with VI3NeuAcnLc6Cer resulted in products with the sialyl-LewisX epitope as well as the VIM-2 structure. To identify polar groups on acceptors that function in enzyme binding, deoxygenated substrate analogs were tested as acceptors. All three Fuc-Ts had an absolute requirement for a hydroxyl at C-6 of galactose in addition to the accepting hydroxyl at C-3 or C-4 of GlcNAc.
A considerable amount (approximately 1.6 W Wg from 1 mg of dried nematode) of non-sulfated chondroitin, two orders of magnitude less yet an appreciable amount of heparan sulfate, and no hyaluronate were found in Caenorhabditis elegans nematodes. The chondroitin chains were heterogeneous in size, being shorter than that of whale cartilage chondroitin sulfate. The disaccharide composition analysis of heparan sulfate revealed diverse sulfation including glucosamine 2-N-sulfation, glucosamine 6-O-sulfation and uronate 2-O-sulfation. These results imply that chondroitin and heparan sulfate are involved in fundamental biological processes.z 1999 Federation of European Biochemical Societies.
A cDNA encoding a -1,4-galactosyltransferase named -1,4-GalT II was cloned from a cDNA library of the human breast tumor cell line, MRK-nu-1. Initially, a 860-bp PCR fragment was obtained from MRK-nu-1 mRNA by 3-rapid amplification of cDNA ends by using two nested degenerate oligonucleotide primers based on a highly conserved amino acid sequence found in the catalytic domain of mammalian -1,4-galactosyltransferases and Lymnaea stagnalis -1,4-N-acetylglucosaminyltransferase (-1,4-GlcNAcT), both of which utilize the same sugar acceptor. This subsequently was used as a probe to isolate a 4.7-kb cDNA that contained an ORF of 1,164 bp predicting a polypeptide of 388 aa. Its deduced amino acid sequence shows an identity of 37% with that of the previously characterized human -1,4-galactosyltransferase (referred to as -1,4-GalT I) and of 28% with that of L. stagnalis -1,4-GlcNAcT. Study of the properties of the -1,4-GalT II fused to protein A expressed as a soluble form in COS-7 cells revealed that it is a genuine -1,4-GalT but has no lactose synthetase activity in the presence of ␣-lactalbumin. Northern blot analysis of 24 human tissues showed that they all express the -1,4-GalT II transcript, although the levels varied. These results indicate that human cells contain another -1,4-GalT.Cell surface carbohydrates have been demonstrated to play important roles in many biological events. In particular, complex-type sugar chains on mammalian glycoconjugates containing Gal1 3 4GlcNAc outer branches carrying polysialic acid and HNK-1 epitopes or LewisX and sialyl LewisX determinants seem to be involved in adhesion processes such as cell-to-cell and cell-to-matrix interactions (reviewed in refs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.