Annual ryegrass (Lolium rigidum) is a problematic weed in winter crops and fallows in the southeastern cropping region (SCR) of Australia. This weed has evolved resistance to multiple herbicide groups, globally. In Australia, L. rigidum is more prevalent in the western and southern regions than in SCR. To assess the herbicide resistance status of L. rigidum, the response of five L. rigidum populations (collected from the SCR) to glyphosate, glufosinate, paraquat, haloxyfop-P-ethyl, and clethodim is determined using dose–response curves. Three parametric logistic models are used to determine the herbicide dose required to achieve 50% survival (LD50) and 50% growth reduction (GR50). The LD50 values for 50% survival at 28 days after treatment range from 1702 g a.e. ha−1 to 8225 g a.e. ha−1 for glyphosate, 1637 g a.i. ha−1 to 1828 g a.i. ha−1 for glufosinate, 141 g a.i. ha−1 to 307 g a.i. ha−1 for paraquat, 11 g a.i. ha−1 to 107 g a.i. ha−1 for haloxyfop-P-ethyl, and 17 g a.i. ha−1 to 48 g a.i. ha−1 for clethodim. The resistance factor, based on GR50 value, is highest in the S7 population (2.2 times) for glyphosate, the S11 population (2.3 times) for glufosinate, the S11 population (2.0 time) for paraquat, the S7 population (3.9 times) for haloxyfop-P-ethyl, and the S3 population (3.1 times) for clethodim, compared with the susceptible or less tolerant population. The S11 population is found to be resistant to five tested herbicides, based on resistance factors. Similarly, the S3 population is highly resistant to glyphosate, haloxyfop-P-ethyl, and clethodim compared with the W4 population. These results suggest that L. rigidum populations in the SCR exhibit resistance to multiple herbicide groups at labelled field rates. The findings highlight the necessity of adopting an integrated management approach, including the use of residual herbicides, tank mixing herbicides with different modes of action, and rotating herbicides in conjunction with cultural and mechanical control methods.