2019
DOI: 10.3233/jifs-18943
|View full text |Cite
|
Sign up to set email alerts
|

Pythagorean cubic fuzzy aggregation operators and their application to multi-criteria decision making problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
67
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 45 publications
(69 citation statements)
references
References 34 publications
0
67
0
Order By: Relevance
“…Definition Assuming N to be the universe of discourse, a PCFS normalΘ under N would mean a combination of collections 22,23 : normalΘ = false{ n , ϑ false( n false) , ϖ false( n false) n N false} , ϑ false( n false) = false{ n , false〈 [ Δ L false( n false) , Δ R false( n false) ] , [ L false( n false) , R false( n false) ] false〉 0.25em ~ n N false} is an IVPFS, where 0 Δ L Δ R 1 and 0 L R 1 ; ϖ false( n false) = false{ n , false〈 normalΔ ˜ ( n ) , ˜ ( n ) false〉 ~ n N false} is a PFS under N , where 0 true Δ ˜ 1 , 0 true ˜ 1 and true π ˜ false( n false) = 1 normalΔ ˜ 2 false( n false) ˜ 2 false( n false) represent the hesitation of the PFS. For each element, n in N , we have 0 false( Δ R false( n false) false) 2 + false( R false( n false) false) 2 1 and 0 false( true Δ ˜ false( n...…”
Section: Preliminariesmentioning
confidence: 99%
See 4 more Smart Citations
“…Definition Assuming N to be the universe of discourse, a PCFS normalΘ under N would mean a combination of collections 22,23 : normalΘ = false{ n , ϑ false( n false) , ϖ false( n false) n N false} , ϑ false( n false) = false{ n , false〈 [ Δ L false( n false) , Δ R false( n false) ] , [ L false( n false) , R false( n false) ] false〉 0.25em ~ n N false} is an IVPFS, where 0 Δ L Δ R 1 and 0 L R 1 ; ϖ false( n false) = false{ n , false〈 normalΔ ˜ ( n ) , ˜ ( n ) false〉 ~ n N false} is a PFS under N , where 0 true Δ ˜ 1 , 0 true ˜ 1 and true π ˜ false( n false) = 1 normalΔ ˜ 2 false( n false) ˜ 2 false( n false) represent the hesitation of the PFS. For each element, n in N , we have 0 false( Δ R false( n false) false) 2 + false( R false( n false) false) 2 1 and 0 false( true Δ ˜ false( n...…”
Section: Preliminariesmentioning
confidence: 99%
“…Definition For one PCFN, 23 normalΘ = false〈 ϑ ϖ false〉 = false〈 [ Δ L false( n false) , Δ R false( n false) ] , [ L false( n false) , R false( n false) ] false〉 0.25em 0.25em false〈 normalΔ ˜ ( n ) , ˜ ( n ) false〉 , the score function is, S )( Θ = Δ L + Δ R true Δ ˜ 3 2 L + R true ˜ 3 2 . …”
Section: Preliminariesmentioning
confidence: 99%
See 3 more Smart Citations