The increasingly rapid spread of information about COVID-19 on the web calls for automatic measures of credibility assessment [18]. If large parts of the population are expected to act responsibly during a pandemic, they need information that can be trusted [20].In that context, we model the credibility of texts using 25 linguistic phenomena, such as spelling, sentiment and lexical diversity. We integrate these measures in a graphical interface and present two empirical studies to evaluate its usability for credibility assessment on COVID-19 news. Raw data for the studies, including all questions and responses, has been made available to the public using an open license: https://github.com/ konstantinschulz/credible-covid-ux. The user interface prominently features three sub-scores and an aggregation for a quick overview. Besides, metadata about the concept, authorship and infrastructure of the underlying algorithm is provided explicitly. Our working definition of credibility is operationalized through the terms of trustworthiness, understandability, transparency, and relevance. Each of them builds on well-established scientific notions [41,65,68] and is explained orally or through Likert scales. In a moderated qualitative interview with six participants, we introduce information transparency for news about COVID-19 as the general goal of a prototypical platform, accessible through an interface in the form of a wireframe [43]. The participants' answers are transcribed in excerpts. Then, we triangulate inductive and deductive coding methods [19] to analyze their content. As a result, we identify rating scale, sub-criteria and algorithm authorship as important predictors of the usability. In a subsequent quantitative online survey, we present a questionnaire with wireframes to 50 crowdworkers. The question formats include Likert scales, multiple choice and open-ended types. This way, we aim to strike a balance between the known strengths and weaknesses of open vs. closed questions [11]. The answers reveal a conflict between transparency and conciseness in the interface design: Users tend to ask for more information, but do not necessarily make explicit use of it when given. This discrepancy is influenced by capacity constraints of the human working memory [38]. Moreover, a perceived hierarchy of metadata