IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.
We show that it is possible to reliably discriminate whether a syntactic construction is meant literally or metaphorically using lexical semantic features of the words that participate in the construction. Our model is constructed using English resources, and we obtain state-of-the-art performance relative to previous work in this language. Using a model transfer approach by pivoting through a bilingual dictionary, we show our model can identify metaphoric expressions in other languages. We provide results on three new test sets in Spanish, Farsi, and Russian. The results support the hypothesis that metaphors are conceptual, rather than lexical, in nature.
In this paper, we present an approach that address the answer sentence selection problem for question answering. The proposed method uses a stacked bidirectional Long-Short Term Memory (BLSTM) network to sequentially read words from question and answer sentences, and then outputs their relevance scores. Unlike prior work, this approach does not require any syntactic parsing or external knowledge resources such as WordNet which may not be available in some domains or languages. The full system is based on a combination of the stacked BLSTM relevance model and keywords matching. The results of our experiments on a public benchmark dataset from TREC show that our system outperforms previous work which requires syntactic features and external knowledge resources.
Variations in writing styles are commonly used to adapt the content to a specific context, audience, or purpose. However, applying stylistic variations is still largely a manual process, and there have been little efforts towards automating it. In this paper we explore automated methods to transform text from modern English to Shakespearean English using an end to end trainable neural model with pointers to enable copy action. To tackle limited amount of parallel data, we pre-train embeddings of words by leveraging external dictionaries mapping Shakespearean words to modern English words as well as additional text. Our methods are able to get a BLEU score of 31+, an improvement of ≈ 6 points over the strongest baseline. We publicly release our code to foster further research in this area. 1
In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise , non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summariza-tion techniques to address this task and experiment with different biomedical on-tologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.