IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.
The first stage of processing in the IBM Watsoni system is to perform a detailed analysis of the question in order to determine what it is asking for and how best to approach answering it. Question analysis uses Watson's parsing and semantic analysis capabilities: a deep Slot Grammar parser, a named entity recognizer, a co-reference resolution component, and a relation extraction component. We apply numerous detection rules and classifiers using features from this analysis to detect critical elements of the question, including: 1) the part of the question that is a reference to the answer (the focus); 2) terms in the question that indicate what type of entity is being asked for (lexical answer types); 3) a classification of the question into one or more of several broad types; and 4) elements of the question that play particular roles that may require special handling, for example, nested subquestions that must be separately answered. We describe how these elements are detected and evaluate the impact of accurate detection on our end-to-end question-answering system accuracy.
A key phase in the DeepQA architecture is Hypothesis Generation, in which candidate system responses are generated for downstream scoring and ranking. In the IBM Watsoni system, these hypotheses are potential answers to Jeopardy!i questions and are generated by two components: search and candidate generation. The search component retrieves content relevant to a given question from Watson's knowledge resources. The candidate generation component identifies potential answers to the question from the retrieved content. In this paper, we present strategies developed to use characteristics of Watson's different knowledge sources and to formulate effective search queries against those sources. We further discuss a suite of candidate generation strategies that use various kinds of metadata, such as document titles or anchor texts in hyperlinked documents. We demonstrate that a combination of these strategies brings the correct answer into the candidate answer pool for 87.17% of all the questions in a blind test set, facilitating high end-to-end question-answering performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.