This study focuses on the development of a machine learning ensemble approach for the classification of Beta-Secretase 1 (BACE1) inhibitors in Quantitative Structure-Activity Relationship (QSAR) analysis. BACE1 is an enzyme linked to the production of amyloid beta peptide, a significant component of Alzheimer's disease plaques. The discovery of effective BACE1 inhibitors is difficult, but QSAR modeling offers a cost-effective alternative by predicting the activity of compounds based on their chemical structures. This study evaluates the performance of four machine learning models (Random Forest, AdaBoost, Gradient Boosting, and Extra Trees) in predicting BACE1 inhibitor activity. Random Forest achieved the highest performance, with a training accuracy of 98.65% and a testing accuracy of 82.53%. In addition, it exhibited superior precision, recall, and F1-score. Random Forest's superior performance was a result of its ability to capture a wide variety of patterns and its randomized ensemble approach. Overall, this study demonstrates the efficacy of ensemble machine learning models, specifically Random Forest, in predicting the activity of BACE1 inhibitors. The findings contribute to ongoing efforts in Alzheimer's disease drug discovery research by providing a cost-effective and efficient strategy for screening and prioritizing potential BACE1 inhibitors.