2009
DOI: 10.1002/qsar.200860136
|View full text |Cite
|
Sign up to set email alerts
|

QSAR Modeling of 1‐(3,3‐Diphenylpropyl)‐Piperidinyl Amides as CCR5 Modulators Using Multivariate Adaptive Regression Spline and Bayesian Regularized Genetic Neural Networks

Abstract: This study deals with developing a quantitative structure-activity relationship (QSAR) model for describing and predicting the inhibition activity of 1-(3,3-diphenylpropyl)-piperidinyl derivatives as CCR5 modulators. Applying the multiple linear regressions (MLR) and its inability in predicting the inhibition behavior showed that the interaction has no linear characteristics. To assess the nonlinear characteristics of the inhibition activity artificial neural networks (ANN) was used for data modeling. In order… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
1

Year Published

2012
2012
2020
2020

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 21 publications
(10 citation statements)
references
References 39 publications
0
9
0
1
Order By: Relevance
“…In order to correlate the sensor response to amine concentrations, Bayesian regularized artificial neural network (BRANN) [29] has been used. The BRANN models are a class of multilayer perceptron networks with high prediction power and reproducibility of results [30]. More details about this class of networks can be found in literature [31,32].…”
Section: Resultsmentioning
confidence: 99%
“…In order to correlate the sensor response to amine concentrations, Bayesian regularized artificial neural network (BRANN) [29] has been used. The BRANN models are a class of multilayer perceptron networks with high prediction power and reproducibility of results [30]. More details about this class of networks can be found in literature [31,32].…”
Section: Resultsmentioning
confidence: 99%
“…It is clear and obvious that the composition of the feature space in data matrix has drastic effect on the performances of the DA techniques. Therefore, it is very necessary to select the best subset of molecular descriptors using variable selection and dimension reduction techniques 25. In CS‐MINER, two separated steps have been designed for choosing the best subset of molecular descriptors.…”
Section: Methodsmentioning
confidence: 99%
“…У якості базового алгоритму в даному до-слідженні було вибрано багатовимірні адаптивні регресійні сплайни (multivariate adaptive regression splines -MARS). Цей метод здатен описати складні нелінійні зв'язки між структурою молекул та їх активністю і довів свою ефективність у багатьох дослідженнях [19][20][21][22][23]. Алгоритм MARS створює адитивну нелінійну модель наступного вигляду: де: ŷ -прогнозоване значення активності; а 0 -зсув моделі; M є кількістю базисних функцій, а В m та a m є m-ою базисною функцією та її коефіцієнтом [24].…”
Section: створення моделіunclassified