2016
DOI: 10.1016/j.cmpb.2015.10.016
|View full text |Cite
|
Sign up to set email alerts
|

Quadratic blind linear unmixing: A graphical user interface for tissue characterization

Abstract: Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind en… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2017
2017
2020
2020

Publication Types

Select...
3
2

Relationship

2
3

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 41 publications
0
6
0
2
Order By: Relevance
“…Therefore, for a more general oxygen saturation analysis without knowing extinction coefficients, the blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms are implemented on the hyperspectral vessel images. Detailed explanation can be found in [ 38 ] and the final end-member matrix is extracted according to Eq ( 11 ): where , Y represents the input data, A N represents their correspondent abundances, ρ > 0 represents the regularization weight, N is the number of end member and L is the dimension number.…”
Section: Methodsmentioning
confidence: 99%
“…Therefore, for a more general oxygen saturation analysis without knowing extinction coefficients, the blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms are implemented on the hyperspectral vessel images. Detailed explanation can be found in [ 38 ] and the final end-member matrix is extracted according to Eq ( 11 ): where , Y represents the input data, A N represents their correspondent abundances, ρ > 0 represents the regularization weight, N is the number of end member and L is the dimension number.…”
Section: Methodsmentioning
confidence: 99%
“…The estimation of the complete abundance matrix A, where this final step is obtained, once P is defined by considering all the dataset Y in (17), and computing the corresponding abundances {α k } K k=1 . Finally, these abundances in A are scaled by S to reproduce the original dataset Z according to (10). A block diagram of the EBEAE implementation is illustrated in Fig.…”
Section: C)mentioning
confidence: 99%
“…An unmixing analysis allows a quantitative characterization of a dataset by identifying the end-members and their corresponding abundances in a linear mixture model [1]- [3]. Hence, the problem of jointly estimating the end-members and their abundances in a dataset is called blind linear unmixing (BLU) analysis [10]- [12]. The unmixed dataset characterizes the constitutive components of the sample by classifying the end-members, and highlights a quantitative study of their contributions by the abundances [3].…”
Section: Introductionmentioning
confidence: 99%
“…Estos vectores contienen la respuesta al impulso de fluorescencia en cada posición. Para poder interpretar los datos, se utilizó una técnica de descomposición espectral, concretamente el método ciego y la herramienta presentada en [7]. Esta técnica funciona bajo un modelo de mezcla lineal (1) donde representa los datos de la respuesta el impulso de fluorescencia y es una matriz de ruido.…”
Section: Metodologíaunclassified
“…Para interpretarlos, se suele acudir a diferentes metodologías; como el uso de técnicas de deconvolución [6] para extraer las respuestas al impulso del tejido y estimar los tiempos de vida de las moléculas auto-fluorescentes; o incluso técnicas de descomposición lineal [7], las cuales proporcionan una descripción cuantitativa de los datos. En ambos casos, la intensión proveer una interpretación más sencilla de los datos mFLIM para facilitar sus aplicaciones prácticas.…”
Section: Introductionunclassified