Background
In recent years, ecofriendly compounds such as chitosan has been used to alleviate the destructive effects of salt stress. Chitosan is a natural biodegradable compound with no toxicity in nature and act as a stress tolerance inductor involved in physiological processes and prevent water loss through transpiration. Tomato cv. Rio Grande grown in pots was subjected with salinity stress in the form of 4 levels (0, 50, 100 and 150 mM) whose effect was mediated by treating it with different concentration of chitosan (0, 50, 100 and 150 mg L−1).
Results
The data revealed that various application of salinity had a negative effect on almost all the studied parameters. Tomato plants treated with distilled water having no salinity (control) recorded maximum plant height (cm), average number of compound leaves plant−1, leaf area (cm2), stem diameter (mm), number of fruits plant−1, fruit firmness (kg cm−2), leaf chlorophyll content (SPAD), fruit juice pH, yield plant−1 (kg) and minimum total soluble solids (Brix°). Whereas, minimum plant height (cm), average number of compound leaves plant−1, leaf area (cm2), stem diameter (mm), number of fruits plant−1, fruit firmness (kg cm−2), leaf chlorophyll content (SPAD), fruit juice pH, yield plant−1 (kg) and maximum total soluble solids (Brix°) were found in plants treated with salinity level of 150 mM. Chitosan concentration of 150 mg L−1 significantly mediated the effect of salinity stress and recorded maximum plant height (cm), average number of compound leaves plant−1, leaf area (cm2), stem diameter (mm), number of fruits plant−1, fruit firmness (kg cm−2), leaf chlorophyll content (SPAD), total soluble solids (Brix°) and yield plant−1 (kg) with minimum fruit juice pH.
Conclusion
It is concluded that foliar application of chitosan at the rate of 150 mg L−1 and salinity stress 150 mM could have positive impact on performance of tomato.