Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT—no administration of alcohol or Simvastatin; (II) ALC—2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM—5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5—5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15—15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson’s trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.