Exhaust gases from internal combustion engines are the main source of urban air pollution. Quantification of Polycyclic aromatic hydrocarbons (PAHs) in the exhaust gases is needed for emissions monitoring, enforcement, development, and testing of control technologies. The objective was to develop quantification of gaseous naphthalene in diesel engine exhaust based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating and analysis on gas chromatography-mass spectrometry (GC-MS). Extraction of naphthalene with retracted fibers followed Fick's law of diffusion. Extracted mass of naphthalene was proportional to C g , t, D g , T and inversely proportional to Z. Method detection limit (p = 0.95) was 11.5 ppb (0.06 mg·m −3 ) at t = 9 h, Z = 10 mm and T = 40 • C, respectively. It was found that the % mass extracted of naphthalene by SPME needle assembly depended on the type of fiber. Storage time at different temperatures did not affect analyte losses extracted by polydimethylsiloxane (PDMS) 100 µm fiber. The developed method was tested on exhaust gases from idling pickup truck and tractor, and compared side-by-side with a direct injection of sampled exhaust gas method. Time-weighted average (TWA) concentrations of naphthalene in exhaust gases from idling pickup truck and a tractor ranged from 0.08 to 0.3 mg·m −3 (15.3-53.7 ppb).